Abstract:
The effect of interband-transition-inducing illumination on the hole hopping conduction along a two-dimensional array of Ge quantum dots in Si was studied. It is found that the photoconductance has either positive or negative sign depending on the initial filling of quantum dots with holes. In the course of illumination and after switching off the light, long-time photoconduction kinetics was observed ($10^2-10^4$ s at $T=4.2$ K). The results are discussed in terms of a model based on the spatial separation of nonequilibrium electrons and holes in a potential relief formed by positively charged dots. The effect of equalization of potential barrier heights as a result of photohole capture by the charged quantum dots during the process of illumination and relaxation is suggested as an additional factor for explaining the phenomenon of persistent conduction.