Abstract:
Anomalously long millisecond kinetics of photoluminescence (PL) is observed at low temperatures (4.2–50 K) in direct-bandgap InAs quantum dots formed in an AlAs matrix. An increase in temperature leads to a decrease in the duration of PL decay down to several nanoseconds at 300 K, whereas the integral PL intensity remains constant up to 210 K. In order to explain the experimental results, a model is proposed that takes into account the singlet-triplet splitting of exciton levels in small quantum dots.