RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2002 Volume 75, Issue 7, Pages 428–1 (Mi jetpl3078)

This article is cited in 1 paper

METHODS OF THEORETICAL PHYSICS

Collapse in the nonlinear Schrödinger equation of critical dimension $\{\mathbf{\sigma =1,\,D=2} \}$

Yu. N. Ovchinnikovab, I. M. Sigalc

a Max Planck Institute for the Physics of Complex Systems
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Department of Mathematics, University of Toronto

Abstract: Collapsing solutions to the nonlinear Schrödinger equation of critical dimension $\{\sigma =1,\,D=2 \}$ are analyzed in the adiabatic approximation. A three-parameter set of solutions is obtained for the scale factor $\lambda(t)$. It is shown that the Talanov solution lies on the separatrix between the regions of collapse and convenient expansion. A comparison with numerical solutions indicates that weakly collapsing solutions provide a good initial approximation to the collapse problem.

PACS: 02.30.Jr, 03.65.Ge

Received: 27.02.2002


 English version:
Journal of Experimental and Theoretical Physics Letters, 2002, 75:7, 357–361

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025