RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2013 Volume 97, Issue 10, Pages 669–674 (Mi jetpl3427)

This article is cited in 2 papers

CONDENSED MATTER

Hyperfine magnetic interactions of $^{57}$Fe nuclei in NaFeAs arsenide

I. a. Presnyakov, I. Morozov, A. V. Sobolev, M. V. Roslova, A. I. Boltalin, O. S. Volkova, A. N. Vasiliev

M. V. Lomonosov Moscow State University

Abstract: The results of the Mössbauer effect studies of layered NaFeAs arsenide in a wide temperature range are presented. The measurements at $T>T_{\text{N}}$ demonstrate that the main part (${\sim}\,90\%$) of iron atoms are in the low-spin state Fe$^{2+}$. The other atoms can be attributed to the impurity NaFe$_2$As$_2$ phase or to the extended defects in NaFeAs. The structural phase transition (at $T_S\approx55\,$K) does not produce any effect on hyperfine parameters $(\delta,\Delta)$ of iron atoms. At $T<T_{\text{N}}$, the spectra exhibit the existence of a certain distribution of the hyperfine magnetic field ($H_{\text{Fe}}$) at $^{57}$Fe nuclei, indicating the inhomogeneity of the magnetic environment around iron cations. The analysis of the temperature behavior of the distribution function $p(H_{\text{Fe}})$ allows us to determine the temperature of the magnetic phase transition ($T_{\text{N}}=46\pm2\,$K). It has been found that the magnetic ordering in the iron sublattice has a two-dimensional type. The analysis of the $H_{\text{Fe}}(T)$ dependence in the framework of the Bean-Rodbell model reveals a first-order magnetic phase transition accompanied by a drastic change in the electron contributions to the main component $(V_{ZZ})$ and the asymmetry parameter $(\eta)$ of the tensor describing the electric field gradient at $^{57}$Fe nuclei.

Received: 03.04.2013

DOI: 10.7868/S0370274X13100068


 English version:
Journal of Experimental and Theoretical Physics Letters, 2013, 97:10, 583–587

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025