Abstract:
The results of the theoretical analysis and computer simulation of the behavior of neutrally stable shock waves with real (van der Waals gas, magnesium) equations of state are presented. An approach is developed in which the region of the neutral stability of a shock wave for each pressure value in front of the wave is determined from the analysis of the equation of state. A simple algorithm is developed to determine the cause of acoustic perturbations (a shock front or an external source) immediately from the flow pattern. In contrast to the predictions of the linear theory, the amplitude of the perturbations of the neutrally stable shock wave decreases with time, although this process is noticeably slower than in the case of an absolutely stable shock wave.