Abstract:
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is ($530 \pm 30$) min at the temperature $T=0.5$ K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.