RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2017 Volume 106, Issue 3, Pages 132–137 (Mi jetpl5332)

This article is cited in 12 papers

FIELDS, PARTICLES, AND NUCLEI

Self-consistent description of $EL$ transitions between one-phonon states in magic nuclei

S. P. Kamerdzhieva, D. A. Voitenkovb, E. E. Sapersteinca, S. V. Tolokonnikovda, M. I. Shitovc

a National Research Center Kurchatov Institute, Moscow, Russia
b Leipunsky Institute of Physics and Power Engineering, Obninsk, Kaluga region, Russia
c National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
d Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region, Russia

Abstract: Transition probabilities between low-lying one-phonon states of magic nuclei are for the first time computed self-consistently within an approach to anharmonic effects based on the quantum theory of many-body systems. In the adopted approach, three-quasiparticle correlations in the ground state are taken into account, and the nuclear mean field is interrelated with the effective nucleon-nucleon interaction. These quantities are derived using the energy density functional method with known parameters of the Fayans functional. The $E1$ and $E2$ transitions in the $^{132}$Sn and $^{208}$Pb nuclei are considered as an example, and a reasonably good agreement with the data on these nuclei is reached. Three-quasiparticle correlations in the ground state are shown to make a significant contribution to the probabilities of the discussed transitions.

Received: 13.06.2017
Revised: 07.07.2017

DOI: 10.7868/S0370274X17150024


 English version:
Journal of Experimental and Theoretical Physics Letters, 2017, 106:3, 139–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025