Abstract:
It has been shown that the Kohn–Luttinger superconductivity mechanism interplaying with other types of ordering can be implemented in systems with a hexagonal lattice. A number of unusual properties of such systems in the normal phase have also been considered. Our previous results on Kohn–Luttinger superconductivity with $p$, $d$-, and $f$-wave pairing in monolayer and AB bilayer graphene, obtained disregarding the effect of substrate potential and impurities, have been presented in the first part. Then, the interplay of the superconducting Kohn–Luttinger state with the spin density wave state in actual AB, AA, and twisted bilayer graphene has been discussed in detail. In the last parts, a number of anomalous properties in the normal phase and the appearance of nematic superconductivity alongside with the spin density wave in the twisted bilayer graphene have been presented.