Abstract:
A technique has been developed for the evaluation of the transparency of grain boundaries in polycrystalline superconducting films. The model is founded upon a numerical algorithm for calculating the density of states of an Abrikosov vortex located in the center of a cylindrical granule, separated from the main superconducting matrix by a boundary with finite transparency. The present study calculates the dependencies of the gap difference in the density of states on both sides of the boundary and uses this difference to estimate the transparency of the interface.