Abstract:
A nonstandard shape of the gamma resonance spectra of nanoparticles in the form of inverted five-step pedestal has been predicted, observed, and analytically described. This shape corresponds to the limit of high temperatures and slow relaxation of the homogeneous magnetization of single-domain particles with axial magnetic anisotropy. To describe the Mössbauer spectra of the ensemble of chaotically oriented nanoparticles in a magnetic field, a continual magnetic-dynamics model has been developed in the limit of slow relaxation. This model adequately describes the polarization effects observed in the experimental absorption spectra. The revealed features significantly expand the methodical capabilities of Mössbauer spectroscopy for the diagnostics of magnetic nanomaterials.