RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2007 Volume 86, Issue 7, Pages 558–562 (Mi jetpl884)

This article is cited in 8 papers

METHODS OF THEORETICAL PHYSICS

On an explicit construction of Parisi landscapes in finite dimensional Euclidean spaces

Ya. V. Fyodorovab, J.-P. Bouchaudcd

a School of Mathematical Sciences, University of Nottingham
b Institute of Theoretical Physics, University of Cologne
c Science & Finance, Capital Fund Management
d Service de Physique de l'État Condensé

Abstract: We construct a $N$-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension $N\to\infty$ the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida's Generalized Random Energy Model. The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. We argue that our construction is in fact valid in any finite spatial dimensions $N\ge1$.

PACS: 64.60.Cn, 05.40.-a

Received: 17.08.2007

Language: English


 English version:
Journal of Experimental and Theoretical Physics Letters, 2007, 86:7, 487–491

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025