RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2007 Volume 85, Issue 5, Pages 314–319 (Mi jetpl990)

This article is cited in 12 papers

METHODS OF THEORETICAL PHYSICS

The density of stationary points in a high-dimensional random energy landscape and the onset of glassy behaviour

Ya. V. Fyodorovab, H.-J. Sommersc, I. Williamsa

a School of Mathematical Sciences, University of Nottingham, NG72RD Nottingham, England
b Petersburg Nuclear Physics Institute RAS
c University of Duisburg-Essen, Department of Physics

Abstract: We calculate the density of stationary points and minima of a $N\gg1$ dimensional Gaussian energy landscape. We use it to show that the point of zero-temperature replica symmetry breaking in the equilibrium statistical mechanics of a particle placed in such a landscape in a spherical box of size $L=R\sqrt N$ corresponds to the onset of exponential in $N$ growth of the cumulative number of stationary points, but not necessarily the minima. For finite temperatures we construct a simple variational upper bound on the true free energy of the $R=\infty$ version of the problem and show that this approximation is able to recover the position of the whole de-Almeida-Thouless line.

PACS: 05.40.-a, 75.10.Nr

Received: 29.01.2007

Language: English


 English version:
Journal of Experimental and Theoretical Physics Letters, 2007, 85:5, 261–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024