RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2005 Volume 1, Number 2, Pages 155–181 (Mi jmag10)

This article is cited in 2 papers

Admissible transformations of measures

S. S. Gabrielyan

Kharkov National Technic University "KPI", 21 Frunze Str., Kharkov, 61002, Ukraine

Abstract: Let a topological semigroup $G$ acts on a topological space $X$. A transformation $g\in G$ is called an admissible (partially admissible, singular, equivalent, invariant) transform for $\mu$ relative to $\nu$ if $\mu_g\ll\nu$ (accordingly: $\mu_g\not\perp\nu$, $\mu_g\perp\nu$, $\mu_g\sim\nu$, $\mu_g=c\cdot\nu$), where $\mu_g(E):=\mu(g^{-1}E)$. We denote its collection by $A(\mu|\nu)$ (accordingly: $AP(\mu|\nu)$, $S(\mu|\nu)$, $E(\mu|\nu)$, $I(\mu|\nu)$). The algebraic and the measure theoretical properties of these sets are studied. It is done the Lebesgue-type decomposition. If $G=X$ is a locally compact group, we give some informations about the measure theoretical size of $A(\mu)$.

Key words and phrases: topological $G$-space, measure, admissible transformation, Lebesgue-type decomposition.

MSC: 28C99, 37A99

Received: 02.09.2004



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024