RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2003 Volume 10, Number 4, Pages 569–582 (Mi jmag268)

This article is cited in 4 papers

Strong asymptotic stability and constructing of stabilizing controls

Grigory M. Sklyarab, Alexander V. Rezounenkoa

a Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
b Institute of Mathematics, Szczecin University, 15 Wielkopolska Str., Szczecin, 70451, Poland

Abstract: We show the role which plays a recent theorem on the strong asymptotic stability in the analysis of the strong stabilizability problem in Hilbert spaces. We consider a control system with skew-adjoint operator and one-dimensional control. We examine in details the property for a linear feedback control to stabilize such a system. A robustness analysis of stabilizing controls is also given.

MSC: Primary 93D15; Secondary 93D20, 93D09

Received: 01.07.2002

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024