RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2005 Volume 1, Number 1, Pages 53–70 (Mi jmag3)

This article is cited in 2 papers

The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a Banach space

S. L. Geftera, V. N. Mokrenyuk

a B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine

Abstract: Let $A$ be a bounded operator on a Banach space. A question about the existence of holomorphic solutions of the equation $z^2Aw'+g(z)=w$ is studied. Moreover, general properties of power series of the form $\sum_{n=0}^\infty c_nA^nz^n$, $c_n\in\mathbb C$ are considered.

Key words and phrases: divergent series, differential equations, Banach space.

MSC: 34A20, 34A25, 34G10

Received: 29.06.2004



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024