RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2001 Volume 8, Number 2, Pages 115–127 (Mi jmag333)

On a Phragmen–Lindelöf type theorem in the strip

I. I. Antypko

V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics

Abstract: Let $u(x,t)$ be a solution of the equation $\frac{\partial^2u(x,t)}{\partial t^2}+Q\left(\frac{\partial}{\partial x}\right)u(x,t)=0$ in the strip $\Pi(T)=\left\{(x,t):x\in\mathbb R\land t\in [0,T]\right\}$, where $Q(s)$ is an arbitrary polynomial with respect to $s\in\mathbb C$ with constant complex coefficients. In the paper the dependence of the behavior of $u(x,t)$ on the functions
$$ u_1(x)=u(x,0), \quad u_2(x)=\frac{\partial u(x,T)}{\partial t} $$
or
$$ u_1(x)=\frac{\partial u(x,0)}{\partial t},\quad u_2(x)=u(x,T), $$
at infinity is studied.

MSC: 35B05,35G15

Received: 21.06.1999



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024