RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2001 Volume 8, Number 3, Pages 308–317 (Mi jmag348)

A question by Alexei Aleksandrov and logarithmic determinants

Mikhail Sodin

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel

Abstract: We construct an analytic function $f$ of Smirnov's class in the unit disk such that $\mathrm{Re}\,f$ vanishes almost everywhere on the unit circle and
$$ \liminf_{t\to\infty} t\operatorname{meas}\{\zeta:\,|\zeta|=1,\ |f(\zeta)|\ge t\}=0. $$
This answers negatively to the question posed by A. Aleksandrov. We also find new sufficient conditions for representations of functions of Smirnov's class by the Schwarz and Cauchy integrals. These conditions extend previous results by Aleksandrov.

MSC: 30D50

Received: 05.06.2001

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024