RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2000 Volume 7, Number 4, Pages 387–414 (Mi jmag386)

Density functions

A. F. Grishina, T. I. Malyutinab

a V. N. Karazin Kharkiv National University
b Ukrainian Academy of Banking

Abstract: We study properties of $\rho$-semiadditive functions, $N(\alpha+\beta)\leq N(\alpha)+(1+\alpha)^\rho N\left(\frac\beta{1+\alpha}\right)$. Their theory is similiar to the very investigated one of semiadditive functions. The functions of density $N(\alpha)$=$\limsup r^{-\rho}(f(r+\alpha r)-f(r))$ $(r\to\infty)$ are $\rho$-semiadditive. One of results of the note is an extension of the theorem of Polya (1929) on existence of maximal and minimal densities. We are interested in the question of uniformity in the above limiting relation.

Received: 16.08.1999



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024