RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1999 Volume 6, Number 1/2, Pages 10–21 (Mi jmag399)

This article is cited in 1 paper

Strongly parabolic timelike submanifolds of Minkowsky space

A. Borisenkoa, M. L. Rabelob, K. Tenenblatb

a Department of Mathematics and Mechanics Faculty, Kharkov National University, 4 Svobody Sq., 31077, Kharkov, Ukraine
b Depertamento de Matemática Universidade de Brasília, 71910-900 Brasília, DF, Brasil

Abstract: R. P. Newman proved that a timelike geodesically complete pseudo-Riemannian manifold with nonnegative Ricci curvature for all vectors and admites a timelike line is isometric to the product of that line and a spacelike complete Riemannian manifold. This result gave a complete proof of a conjecture of Yau. In this paper we proof a cylinder type-theorem which corresponds to the extrinsic version of Newman's result. Moreover, we show that $k$-strongly parabolic geodesically complete submanifolds of a pseudo-Euclidean space with nonnegative Ricci curvature in the spacelike directions are also cylinders with $k$-dimensional generators.

Received: 29.12.1997

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024