RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1999 Volume 6, Number 3/4, Pages 361–371 (Mi jmag420)

A representation of linear functionals on some class of holomorphic functions in the unit disk

R. F. Shamoyan

Bryansk State Pedagogical University

Abstract: A description is given for the dual space to the class of holomorphic functions in $\mathbb D=\{z:|z|<1\}$ such that $\lim\limits_{r\to 1-0}\frac{(1-r)^2}{\omega(1-r)}D^{\alpha+2}(f(re^{i\varphi}))=0$, uniformly in $\varphi$, $\omega(\delta)$ being a function of modulus of continuity type, $\alpha\geq0$. The result extends a known Duren–Romberg–Shields theorem on the dual space to the class $\lambda_{\alpha}^{(n)}$, $0<\alpha\le1$, $n\geq0$.

Received: 01.10.1997



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025