RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1997 Volume 4, Number 1/2, Pages 212–247 (Mi jmag456)

This article is cited in 9 papers

On isometric reflections in Banach spaces

A. Skorik, M. G. Zaidenberg

Institut Fourier de Mathématiques, Université Grenoble I, BP 74, 38402 Saint Martin d'Hères-cédex, France

Abstract: We obtain the following characterization of Hilbert spaces. Let $E$ be a Banach space the unit sphere $S$ of which has a hyperplane of symmetry. Then $E$ is a Hilbert space iff any of the following two conditions is fulfilled: a) the isometry group $\operatorname{Iso}E$ of $E$ has a dense orbit in $S'$ ; b) the identity component $G_0$ of the group $\operatorname{Iso}E$ endowed with the strong operator topology acts topologically irreducible on $E$. Some related results on infinite dimensional Coxeter groups generated by isometric reflections are given which allow us to analyse the structure of isometry groups containing sufficiently many reflections.

Received: 25.12.1995

Language: English



© Steklov Math. Inst. of RAS, 2024