Abstract:
The asymptotic behaviour of an entire function is studied whose zero counting function $n(t)$ satisfies the condition $n(t)=\Delta\ln^pt+\Delta_1\ln^qt+o(\ln^qt)$, $t\to+\infty$, where $0<q<p<\infty$, $0<\Delta<\infty$, $-\infty<\Delta_1<\infty$.