RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 1/2, Pages 164–168 (Mi jmag491)

This article is cited in 2 papers

A note on the Hall–Mergelyan theme

M. L. Sodin

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukraine

Abstract: Let $\mu$ be a measure supported by the points $e^k$, $k=1,2,\dots,$ with the weights $\mu_k=e^{sk^2/2}$ where $s>1$ is a parameter. Then the polynomials are dense in the space$\mathcal L^p(\mu)$ for $p<s$ and are not dense in the space $\mathcal L^p(\mu)$ for $p<s$. This answers the question posed by Christian Berg and Jens Peter Reus Christensen.

Received: 06.03.1995

Language: English



© Steklov Math. Inst. of RAS, 2024