RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 1/2, Pages 169–213 (Mi jmag492)

Wave operators of Deift–Simon type for a class of Schrödinger evolutions. I

L. Zielinski

Institut de Mathématiques de Paris-Jussieu UMR9994, Université Paris 7(D. Diderot), 2 Place Jussieu, 75252 Paris Cedex 05, Case Postale 7012, France

Abstract: We are interested in questions of the scattering theory concerning the asymptotic behaviour of some Schrodinger evolutions. More precisely we present some results of the asymptotic completeness obtained by the method of Deift–Simoh wave operators recently developed in the theory of $N$-body systems. We consider here only the $2$-body case, treating a class of general time-dependent hamiltonians, e.g. $H(t)=H_0+V(t,x)$ with $H_0$ being a second order differential operator witli constant coefficients and $V(t,x)$ decaying suitably when $|x|\to\infty$.

Received: 09.11.1994

Language: English



© Steklov Math. Inst. of RAS, 2025