RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 3/4, Pages 446–455 (Mi jmag507)

On the vertical strong sphericity of Sasaki metric of tangent sphere bundles

A. L. Yampol'skii

Kharkiv State University

Abstract: The distribution $\mathcal L^q$ on the Riemannian manifold $M^n$ is called strong spherical if the curvature tensor of its metric satisfies the condition $R(X,Y)Z=k(\langle Y,Z\rangle X-\langle X,Z\rangle Y)$, ($k>0$) for any tangent to $M^n$ vectors $X$, $Z$ and any $Y\in\mathcal L^q$. The value $q=\operatorname{dim}\mathcal L^q$ is called the strong sphericity index. The conditions are considered at winch the vertical strong spherical distribution can exist on tangent sphere bundle $T_1M^n$ with Sasaki metric.

Received: 09.06.1994



© Steklov Math. Inst. of RAS, 2024