RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2012 Volume 8, Number 1, Pages 3–20 (Mi jmag522)

This article is cited in 2 papers

Hyers–Ulam stability of ternary $(\sigma,\tau,\xi)$-derivations on $C^*$-ternary algebras

M. Eshaghi Gordjia, R. Farrokhzadb, S. A. R. Hosseiniounb

a Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran; Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran
b Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract: Let $q$ be a positive rational number and let $A$ be a $C^*$-ternary algebra. Let $\sigma$, $\tau$ and $\xi$ be linear maps on $A$. We prove the generalized Hyers–Ulam stability of Jordan ternary $(\sigma,\tau,\xi)$-derivations, ternary $(\sigma,\tau,\xi)$-derivations and Lie ternary $(\sigma,\tau,\xi)$-derivations in $A$ for the following Euler–Lagrange type additive mapping:
$$ \Biggl(\sum_{i=1}^nf\biggl(\sum_{j=1}^nq(x_i-x_j)\biggr)\biggr)+nf\biggl(\sum_{i=1}^nqx_i\biggr)=nq\sum_{i=1}^nf(x_i). $$


Key words and phrases: $C^*$-ternary algebra, Hyers–Ulam stability, ternary Banach algebra, Euler–Lagrange type additive mapping.

MSC: 39B82, 39B52, 47C10,17Cxx, 46L05

Received: 08.10.2009

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024