RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2013 Volume 9, Number 1, Pages 51–58 (Mi jmag548)

A Note on Operator Equations Describing the Integral

H. Königa, V. Milmanb

a Mathematisches Seminar Universität Kiel, 24098 Kiel, Germany
b School of Mathematical Sciences Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Abstract: We study operator equations generalizing the chain rule and the substitution rule for the integral and the derivative of the type
\begin{equation} f\circ g + c = I\ (Tf\circ g\cdot Tg), \quad f,g\in C^1(\mathbb{R}),\tag{1} \end{equation}
where $T\!: C^1(\mathbb{R})\to C(\mathbb{R})$ and where $I$ is defined on $C(\mathbb{R})$. We consider suitable conditions on $I$ and $T$ such that (1) is well-defined and, after reformulating (1) as
\begin{equation} V(f\circ g)=Tf\circ g\cdot Tg, \quad f,g\in C^1(\mathbb{R})\tag{2} \end{equation}
with $V\!: C^1(\mathbb{R})\to C(\mathbb{R})$, give the general form of $T$, $V$ and $I$. Simple initial conditions then guarantee that the derivative and the integral are the only solutions for $T$ and $I$. We also consider an analogue of the Leibniz rule and study surjectivity properties there.

Key words and phrases: operator equation, chain rule, Leibniz rule, integral.

MSC: Primary 39B52; Secondary 25A42, 34K30

Received: 23.07.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024