RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2014 Volume 10, Number 3, Pages 320–327 (Mi jmag597)

On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases

A. Kh. Khachatryana, Kh. A. Khachatryanb, T. H. Sardaryanb

a Armenian National Agrarian University, 74 Teryan St., Yerevan, 0009, Armenia
b Institute of Mathematics of National Academy of Sciences of Armenia, 24/5 Baghramyan Ave., Yerevan 0019, Armenia

Abstract: In the paper, the solvability of one nonlinear boundary-value problem arising in kinetic theory of gases is studied. We prove the existence of global solvability of a boundary-value problem in the Sobolev space $W_{\infty}^1(\mathbb{R}^+).$ The limit of the solution is found by using some a'priori estimations. For the case of power nonlinearity, the uniqueness of the solution in a certain class of functions is proved. Some examples illustrating the obtained results are given.

Key words and phrases: boundary-value problem, monotony, nonlinear integral equation, iteration, limit of solution.

MSC: 45G05, 35G55

Received: 09.09.2013
Revised: 05.02.2014

Language: English

DOI: 10.15407/mag10.03.320



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024