RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2015 Volume 11, Number 2, Pages 123–158 (Mi jmag613)

This article is cited in 11 papers

Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials

I. Egorovaab, Z. Gladkaa, T. L. Langeb, G. Teschlbc

a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
b Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Wien 1090, Austria
c International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, Wien 1090, Austria

Abstract: We study the direct and inverse scattering problem for the one-dimensional Schrödinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to its asymptotics. Our results generalize all previous known results and are important for solving the Korteweg–de Vries equation via the inverse scattering transform.

Key words and phrases: Schrödinger operator, inverse scattering theory, steplike potential.

MSC: Primary 34L25, 81U40; Secondary 34B30, 34L40

Received: 20.01.2015
Revised: 18.02.2015

Language: English

DOI: 10.15407/mag11.02.123



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024