RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2015 Volume 11, Number 3, Pages 236–244 (Mi jmag618)

On the growth of the Cauchy–Szegő transform in the unit ball

I. Chyzhykov, M. Voitovych

Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University, 1 Universytetska Str., Lviv 79000, Ukraine

Abstract: The growth of analytic and harmonic functions in the unit ball $B_n$ represented by the Cauchy–Stieltjes or Poisson–Stieltjes integral is studied. A description of the growth is given in terms of smoothness of the Stieltjes measure.

Key words and phrases: holomorphic function, Cauchy–Szegő transform, modulus of continuity, Lipschitz class, Poisson integral, Cauchy integral, Cauchy–Stieltjes integral, Poisson–Stielstjes integral, unit ball.

MSC: Primary 32A26; Secondary 32A25

Received: 22.09.2014
Revised: 14.01.2015

Language: English

DOI: 10.15407/mag11.03.236



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024