RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2017 Volume 13, Number 3, Pages 268–282 (Mi jmag673)

This article is cited in 3 papers

On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs

O. Khorunzhiy

Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles, France

Abstract: We consider the ensemble of real symmetric random matrices $H^{(n,\rho)}$ obtained from the determinant form of the Ihara zeta function of random graphs that have $n$ vertices with the edge probability $\rho/n$. We prove that the normalized eigenvalue counting function of $H^{(n,\rho)}$ converges weakly in average as $n,\rho\to\infty$ and $\rho=o(n^\alpha)$ for any $\alpha>0$ to a shift of the Wigner semi-circle distribution. Our results support a conjecture that the large Erdős–Rényi random graphs satisfy in average the weak graph theory Riemann Hypothesis.

Key words and phrases: random graphs, random matrices, Ihara zeta function, eigenvalue distribution.

MSC: 05C50, 05C80, 15B52, 60F99

Received: 29.09.2015
Revised: 11.10.2016

Language: English

DOI: 10.15407/mag13.03.268



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024