RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2018 Volume 14, Number 1, Pages 16–26 (Mi jmag686)

This article is cited in 6 papers

The existence of heteroclinic travelling waves in the discrete sine-Gordon equation with nonlinear interaction on a $\mathrm{2D}$-lattice

S. Bak

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, 32 Ostrozkogo St., Vinnytsia, 21001, Ukraine

Abstract: The article deals with the discrete sine-Gordon equation that describes an infinite system of nonlinearly coupled nonlinear oscillators on a $\mathrm{2D}$-lattice with the external potential $V(r)=K(1-\cos r)$. The main result concerns the existence of heteroclinic travelling waves solutions. Sufficient conditions for the existence of these solutions are obtained by using the critical points method and concentration-compactness principle.

Key words and phrases: discrete sine-Gordon equation, nonlinear oscillators, 2D-lattice, heteroclinic travelling waves, critical points, concentration-compactness principle.

MSC: 34G20, 37K60, 58E50

Received: 22.06.2017

Language: English

DOI: 10.15407/mag14.01.016



© Steklov Math. Inst. of RAS, 2024