RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2018 Volume 14, Number 1, Pages 27–53 (Mi jmag687)

This article is cited in 6 papers

Renormalized solutions for nonlinear parabolic systems in the Lebesgue–Sobolev spaces with variable exponents

B. El Hamdaoui, J. Bennouna, A. Aberqi

Université Sidi Mohammed Ben Abdellah, Morocco

Abstract: The existence result of renormalized solutions for a class of nonlinear parabolic systems with variable exponents of the type
\begin{align*} \partial_{t} e^{\lambda u_i(x,t)}& -\mathop{\mathrm{div}} (|u_i(x,t)|^{p(x)-2}u_i(x,t))\\ & + \mathop{\mathrm{div}}(c(x,t)|u_i(x,t)|^{\gamma(x)-2}u_i(x,t))=f_{i}(x,u_{1},u_{2})-\mathop{\mathrm{div}}(F_{i}), \end{align*}
for $i=1,2,$ is given. The nonlinearity structure changes from one point to other in the domain $\Omega$. The source term is less regular (bounded Radon measure) and no coercivity is in the nondivergent lower order term $\mathop{\mathrm{div}}(c(x,t)|u(x,t)|^{\gamma(x)-2}u(x,t))$. The main contribution of our work is the proof of the existence of renormalized solutions without the coercivity condition on nonlinearities which allows us to use the Gagliardo–Nirenberg theorem in the proof.

Key words and phrases: parabolic problems, Lebesgue–Sobolev space, variable exponent, renormalized solutions.

MSC: 35J70, 35D05

Received: 10.01.2016
Revised: 06.05.2016

Language: English

DOI: 10.15407/mag14.01.027



© Steklov Math. Inst. of RAS, 2024