RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2020 Volume 16, Number 1, Pages 3–26 (Mi jmag744)

Toeplitz operators with radial symbols on Bergman space and Schatten-von Neumann classes

Z. Bendaouda, S. Kupinb, K. Toumachec, B. Touréd, R. Zaroufe

a Faculté des Sciences, Université Amar Telidji–Laghouat, B.P. 37G, route de Ghardaia, Laghouat 03000, Algérie
b Institut de Mathématiques de Bordeaux UMR5251, CNRS, Université de Bordeaux, 351ave. de la Libération, 33405 Talence Cedex, France
c Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie, Université MohamedKhider–Biskra, B.P. 145, Biskra 07000, Algérie
d Faculté des Sciences et des Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, Campus Universitaire de Badalabougou à Bamako, B.P. E-3206, Bamako, Mali
e Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université, 39 rue F.Joliot Curie, 13453 Marseille Cedex 13, France

Abstract: In the present paper, we study spectral properties of Toeplitz operators with (quasi-) radial symbols on Bergman space. More precisely, the problem we are interested in is to understand when a given Toeplitz operator belongs to a Schatten–von Neumann class. The methods of the approximation theory (i.e., Legendre polynomials) are used to advance in this direction.

Key words and phrases: Toeplitz operators, (quasi-) radial symbols, Bergman spaces, Schatten–von Neumann classes, Legendre polynomials.

MSC: 47B35, 30H20, 42C10.

Received: 12.12.2018
Revised: 08.04.2019

Language: English

DOI: 10.15407/mag16.01.003



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024