RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2020 Volume 16, Number 3, Pages 291–311 (Mi jmag759)

This article is cited in 2 papers

Novel view on classical convexity theory

Vitali Milmana, Liran Rotemb

a Tel Aviv University, Tel-Aviv, 69978, Israel
b Technion – Israel Institute of Technology, Haifa, 32000, Israel

Abstract: Let $B_{x}\subseteq\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e., with center at $\frac{x}{2}$ and radius $\frac{\left|x\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e., $F=\bigcup_{x\in A}B_{x}$ for any set $A\subseteq\mathbb{R}^{n}$. We showed earlier in [9] that the family of all flowers $\mathcal{F}$ is in 1-1 correspondence with $\mathcal{K}_{0}$ – the family of all convex bodies containing $0$. Actually, there are two essentially different such correspondences. We demonstrate a number of different non-linear constructions on $\mathcal{F}$ and $\mathcal{K}_{0}$. Towards this goal we further develop the theory of flowers.

Key words and phrases: convex bodies, flowers, spherical inversion, duality, powers, Dvoretzky's Theorem.

MSC: 52A20, 52A30, 52A23

Received: 28.04.2020

Language: English

DOI: 10.15407/mag16.03.291



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024