RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2020 Volume 16, Number 3, Pages 312–363 (Mi jmag760)

This article is cited in 2 papers

On the Cauchy–Riemann geometry of transversal curves in the 3-sphere

Emilio Mussoa, Lorenzo Nicolodib, Filippo Salisac

a Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
c Istituto Nazionale di Alta Matematica, Italy

Abstract: Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy–Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus is on the CR geometry of transversal knots. Four global invariants of transversal knots are considered: the phase anomaly, the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.

Key words and phrases: CR geometry of the 3-sphere, contact geometry, transversal curves, CR invariants of transversal knots, self-linking number, Bennequin number, the strain functional for transversal curves, critical knots.

MSC: 53C50, 53C42, 53A10

Received: 18.03.2020

Language: English

DOI: 10.15407/mag16.03.312



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024