Abstract:
Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy–Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus is on the CR geometry of transversal knots. Four global invariants of transversal knots are considered: the phase anomaly, the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.
Key words and phrases:CR geometry of the 3-sphere, contact geometry, transversal curves, CR invariants of transversal knots, self-linking number, Bennequin number, the strain functional for transversal curves, critical knots.