RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2020 Volume 16, Number 3, Pages 364–371 (Mi jmag761)

On projective classification of points of a submanifold in the Euclidean space

Alexander Yampolsky

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine

Abstract: We propose the classification of points of a submanifold in the Euclidean space in terms of the indicatrix of normal curvature up to projective transformation and give a necessary condition for finiteness of number of such classes. We apply the condition to the case of three-dimensional submanifold in six-dimensional Euclidean space and prove that there are 10 types of projectively equivalent points.

Key words and phrases: normal curvature indicatrix, submanifold point type, projective transformation.

MSC: 53A07, 53B20, 53B25

Received: 01.06.2020

Language: English

DOI: 10.15407/mag16.032.364



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024