RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2023 Volume 16, Issue 1, Pages 98–109 (Mi jsfu1060)

Recovering a local Lie group from structure constants

Vitaly A. Stepanenko

Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: We construct a coordinate system of the 2nd kind corresponding to canonical coordinates of the 1st kind (in terminology of A. I. Maltsev), thereby obtaining a parametric solution of a Lie system of equations. We also give an integral representation of the group operations $f(x,y)$ of the local Lie group $G$ in canonical coordinates of the 1st kind. Our main tool is the modified formula of A. P. Yuzhakov for implicit mappings. The operation $f(x,y)$ is also represented as a power series, which is the reduced form of the Campbell–Hausdorff series.

Keywords: local Lie group, Campbell–Hausdorff series, formula of A. P. Yuzhakov.

UDC: 517.55+512.812

Received: 08.07.2022
Received in revised form: 17.09.2022
Accepted: 22.11.2022

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024