RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2024 Volume 17, Issue 5, Pages 609–612 (Mi jsfu1192)

On a new identity for double sum related to Bernoulli numbers

Brahim Mittouab

a EDPNL & HM Laboratory of ENS Kouba, Algeria
b Department of Mathematics, University Kasdi Merbah Ouargla, Algeria

Abstract: Let $m$, $n$ and $l$ be integers with $0\leqslant l\leqslant m+n$. It is the main purpose of this paper to give an identity for the sum:
$$\mathop{\sum_{a=0}^{m} \sum_{b=0}^{n}}_{a+b\geqslant m+n-l}B_{m-a}B_{n-b}\frac{\binom{m}{a}\binom{n}{b}}{a+b+1}\binom{a+b+1}{m+n-l},$$
where $B_m$ $(m=0,1,2,\dots)$ is the Bernoulli number. As corollary we prove that the above sum equal to $\dfrac{1}{2}$ when $l=0$.

Keywords: Bernoulli polynomial, Bernoulli number, generating function.

UDC: 512.6

Received: 10.04.2024
Received in revised form: 24.05.2024
Accepted: 14.07.2024

Language: English



© Steklov Math. Inst. of RAS, 2025