RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2011 Volume 4, Issue 1, Pages 11–17 (Mi jsfu157)

On spherical cycles in the complement to complex hypersurfaces

Natalia A. Bushueva

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: It is known due to S. Yu. Nemirovski, that for $n\geq3$ and generic hypersurface $V\subset\mathbb C^n$ of degree $d\geq3$ there exists a sum of the Whitney spheres homotopic to an embedded sphere, which represents a nontrivial homological class of the homology group $H_n(\mathbb C^n\setminus V)$. We discuss whether a linear combination of the Whitney spheres can be represented as an embedded sphere.

Keywords: homology group, embedding, Whitney sphere.

UDC: 517.55+512.7

Received: 10.09.2010
Received in revised form: 10.10.2010
Accepted: 20.11.2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025