Abstract:
For symplectic $Sp_{2n}(\mathbb Z/p^m\mathbb Z)$ and orthogonal $O^+_{2n}(\mathbb Z/p^m\mathbb Z)$ groups over residue ring of integers $\mathbb Z/p^m\mathbb Z,$$p$ – prime integer, $m\ge1,$ we investigate analog Wehrfritz's question 8.3 from Kourovka notebook: for which $n,m,p$ Sylow $p$-subgroups of groups $Sp_{2n}(\mathbb Z/p^m\mathbb Z)$ and $O^+_{2n}(\mathbb Z/p^m\mathbb Z)$ are regular?