RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2012 Volume 5, Issue 3, Pages 388–392 (Mi jsfu254)

This article is cited in 2 papers

Decomposition of transvection in elementary group

Vladimir A. Koibaevab

a North-Ossetia State University, Vladikavkaz, Russia
b South Mathematical Institute of VSC RAS, Vladikavkaz, Russia

Abstract: The elementary net (elementary carpet) $\sigma=(\sigma_{ij})$ an order 3 of additive subgroups commutative ring is considered, the derivative net $\omega$ connected with it, elementary group $E(\sigma)$ and net group $G(\omega)$. It is proved that a elementary transvection $t_{ij}(\alpha)$ from $E(\sigma)$ is a product of a matrix from group $\langle t_{ij}(\sigma_{ij}),t_{ji}(\sigma_{ji})\rangle$ and matrixes from $G(\omega)$.

Keywords: net, carpet, elementary nets, net group, carpet group, elementary group, transvection.

UDC: 512.544.2+512.74

Received: 22.12.2011
Received in revised form: 06.01.2012
Accepted: 10.03.2012



© Steklov Math. Inst. of RAS, 2025