RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2012 Volume 5, Issue 4, Pages 480–484 (Mi jsfu277)

This article is cited in 1 paper

A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a domain

Elena N. Tereshonok, Alexey V. Shchuplev

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: A multidimensional analog of the Weierstrass $\zeta$-function in $\mathbb C^n$ is a differential $(0,n-1)$-form with singularities in the points of the integer lattice $\Gamma\subset\mathbb C^n$. Using this form we construct a $\Gamma$-invariant $(n,n-1)$-form $\tau(z)\wedge dz$. The integral of this form over a domain's boundary is equal to difference between the number of integer points in the domain and its volume.

Keywords: Weierstrass $\zeta$-function, integer lattice, Bochner–Martinelli kernel, Gauss circle problem.

UDC: 517.55

Received: 21.03.2012
Received in revised form: 21.04.2012
Accepted: 15.05.2012

Language: English



© Steklov Math. Inst. of RAS, 2024