Abstract:
In this paper we charaterize the integrability and the non-existence of
limit cycles of Kolmogorov systems of the form
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=x\left( P\left( x,y\right) +\sqrt{R\left( x,y\right) }\right) ,
\\
y^{\prime }=y\left( Q\left( x,y\right) +\sqrt{R\left( x,y\right) }\right) ,
\end{array}
\right.
\end{equation*}
where $P\left( x,y\right) ,$$Q\left( x,y\right) ,$$R\left( x,y\right) ,$
homogeneous polynomials of degree $n,$$n,$$m,$ respectively.
Keywords:Kolmogorov system, first integral, periodic orbits, limit cycle.
UDC:519.21
Received: 07.10.2015 Received in revised form: 04.12.2015 Accepted: 11.01.2016