RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2018 Volume 11, Issue 3, Pages 383–396 (Mi jsfu670)

This article is cited in 16 papers

Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$

Abdullo R. Hayotov

V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, M. Ulugbek street, 81, Tashkent, 100125, Uzbekistan

Abstract: In the present paper, using S.L. Sobolev's method, interpolation splines that minimize the expression $\int_0^1(\varphi^{(m)}(x)+\omega^2\varphi^{(m-2)}(x))^2dx$ in the space $K_2(P_m)$ are constructed. Explicit formulas for the coefficients of the interpolation splines are obtained. The obtained interpolation splines are exact for monomials $1,x,x^2,\dots, x^{m-3}$ and for trigonometric functions $\sin\omega x$ and $\cos\omega x$.

Keywords: interpolation spline, Hilbert space, norm minimizing property, Sobolev's method, discrete argument function.

UDC: 519.652

Received: 07.10.2017
Received in revised form: 10.12.2017
Accepted: 22.03.2018

Language: English

DOI: 10.17516/1997-1397-2018-11-3-383-396



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024