RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2018 Volume 11, Issue 6, Pages 670–679 (Mi jsfu712)

This article is cited in 1 paper

Singular points of complex algebraic hypersurfaces

Irina A. Antipovaa, Evgeny N. Mikhalkinb, Avgust K. Tsikhb

a Institute of Space and Information Technologies, Siberian Federal University, Kirensky, 26, Krasnoyarsk, 660074, Russia
b Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia

Abstract: We consider a complex hypersurface $V$ given by an algebraic equation in $k$ unknowns, where the set $ A\subset {\mathbb Z}^k $ of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in $ ({\mathbb C \setminus 0}) ^ {k} $ parametrized by its coefficients $a =(a_{\alpha})_{\alpha \in A} \in {\mathbb C} ^{A} $. We prove that when $A$ generates the lattice $\mathbb Z^k$ as a group, then over the set of regular points $a$ in the $A$-discriminantal set, the singular points of $V$ admit a rational expression in $a$.

Keywords: singular point, $A$-discriminant, logarithmic Gauss map.

UDC: 517.55

Received: 03.09.2018
Received in revised form: 22.10.2018
Accepted: 28.10.2018

Language: English

DOI: 10.17516/1997-1397-2018-11-6-670-679



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024