RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2019 Volume 12, Issue 4, Pages 466–474 (Mi jsfu785)

Locally explicit fundamental principle for homogeneous convolution equations

Alekos Vidras

Department of Mathematics and Statistics, University of Cyprus, POB 20537, Nicosia 1678, Cyprus

Abstract: In the present paper a locally explicit version of Ehrenpreis's Fundamental Principle for a system of homogeneous convolution equations $\check{f}\ast \mu_j=0$, $j=1,\dots, m $, $f\in\mathcal{E}(\mathbb{R}^n)$, $\mu_j\in\mathcal{E}^{\prime}(\mathbb{R}^n)$, is derived, when the Fourier Transforms $\hat{\mu}_j$, $j=1,\dots, m$ are slowly decreasing entire functions that form a complete intersection in $\mathbb{C}^n$.

Keywords: fundamental principle, division formula.

UDC: 517.55

Received: 13.03.2019
Received in revised form: 20.05.2019
Accepted: 26.05.2019

Language: English

DOI: 10.17516/1997-1397-2019-12-4-466-474



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025