RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2021 Volume 14, Issue 1, Pages 12–20 (Mi jsfu886)

Integral representation and the computation of multiple combinatorial sums from Hall's commutator theory

Georgy P. Egorychev, Sergey G. Kolesnikov, Vladimir M. Leontiev

Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: In this paper we prove a series of combinatorial identities arising from computing the exponents of the commutators in P. Hall's collection formula. We also compute a sum in closed form that arises from using the collection formula in Chevalley groups for solving B. A. F. Wehrfritz problem on the regularity of their Sylow subgroups.

Keywords: integral representation, method of coefficients, P. Hall's collection formula.

UDC: 519.1+517.44+512.54

Received: 10.09.2020
Received in revised form: 10.10.2020
Accepted: 20.11.2020

Language: English

DOI: 10.17516/1997-1397-2021-14-1-12-20



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025