RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2021 Volume 14, Issue 3, Pages 369–375 (Mi jsfu921)

Removable singularities of separately harmonic functions

Sevdiyor A. Imomkulova, Sultanbay M. Abdikadirovb

a Khorezm Regional Branch of the V. I. Romanovsky Mathematical Institute Academy of Sciences of the Republic of Uzbekistan, Urgench, Uzbekistan
b Karakalpak State University, Nukus, Uzbekistan

Abstract: Removable singularities of separately harmonic functions are considered. More precisely, we prove harmonic continuation property of a separately harmonic function $u(x,y)$ in $D\setminus S$ to the domain $D$, when $D\subset\mathbb{R}^n(x)\times\mathbb{R}^m(y)$, $n,m>1$ and $S$ is a closed subset of the domain $D$ with nowhere dense projections $S_1=\{x\in\mathbb{R}^n:(x,y)\in S\}$ and $S_2=\{y\in\mathbb{R}^m:(x,y)\in S\}$.

Keywords: separately harmonic function, pseudoconvex domain, Poisson integral, $\mathcal P$-measure.

UDC: 517.55

Received: 20.01.2021
Received in revised form: 09.02.2021
Accepted: 09.03.2021

Language: English

DOI: 10.17516/1997-1397-2021-14-3-369-375



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024