RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2021 Volume 14, Issue 4, Pages 528–542 (Mi jsfu938)

This article is cited in 1 paper

Inverse problems of finding the lowest coefficient in the elliptic equation

Alexander I. Kozhanovab, Tatyana N. Shipinac

a Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
c Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: The article is devoted to the study of problems of finding the non-negative coefficient $q(t)$ in the elliptic equation
$$u_{tt}+a^2\Delta u-q(t)u=f(x,t)$$
($x=(x_1,\ldots,x_n)\in\Omega\subset \mathbb{R}^n$, $t\in (0,T)$, $0<T<+\infty$, $\Delta$ — operator Laplace on $x_1, \ldots, x_n$). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved.

Keywords: elliptic equation, unknown coefficient, spatial integral condition, boundary integral condition, existence, uniqueness.

UDC: 517.946

Received: 30.12.2020
Received in revised form: 14.03.2021

Language: English

DOI: 10.17516/1997-1397-2021-14-4-528-542



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024